

Lattice QCD

Project Status Report
April 25, 2006
Don Holmgren/Jim Simone

LQCD Project Drivers

- Delivering computing capability for lattice simulations
 - Stakeholders: FNAL theorists (Mackenzie, Simone, Eichten, Kronfeld, post docs), National LQCD collaboration (Bob Sugar, PI), FNAL CD, FNAL PPD, DOE HEP and NP
 - The Projects:
 - SciDAC Lattice Gauge Computing (2001-2006)
 - SciDAC-2 Lattice Gauge Computing (2006-2011)
 - "USQCD" (SC Lattice QCD Computing)

Scope

- SciDAC Lattice Gauge Computing Project (FNAL responsibilities in blue, some shared)
 - Optimization
 - Common libraries (QMP/QIO/QLA/QDP)
 - Runtime environment
 - Cluster prototyping
 - Physics production on cluster prototypes
 - Data interchange (International Lattice Data Grid)

Scope

- SciDAC-2 Lattice Gauge Computing Project
 - Optimization for new hardware
 - Multicore
 - Opteron (or other NUMA)
 - Infiniband (or other network hardware)
 - Maintenance and improvement of libraries
 - Runtime Environment
 - Workflow Automation and Reliability of large systems
 - Algorithm development
 - Visualization
 - Hardware prototyping in support of USQCD
 - Data interchange (ILDG)

Scope

- USQCD (SC Lattice QCD Computing)
 - Operation of new and existing machines dedicated to LQCD at BNL, FNAL, JLab
 - Design and deployment of new machines
 - Project Management

Optimizations

- Scope is limited to SU(3) algebra (small complex matrix-vector multiplies)
- Implementations:
 - Intel/AMD (SSE, SSE2, SSE3)
 - PowerPC (Altivec, native "double hammer")
- Essentially all of this work was completed years ago
- Recent work
 - Maintenance for new compiler versions
 - The minimal changes for x86_64 ABI compatibility
 - Interactions with AMD/Cray to try and understand why performance is limited on Opterons
- Status Complete (more work in SciDAC-2)

QIO library

- This library abstracts hardware architecture details and allows I/O consistent with domain
 - Reads/writes SciDAC/ILDG file formats
 - Understands lattice layouts, parallel I/O
- Role: Testing on clusters, and integration with dCache (libdcap)

Status:

- Implemented in some physics codes (MILC via QDP, QDP++)
- Libdcap issues with large files
- Much work is needed to prepare for analysis of MILC fine lattices (8+ Gbyte propagator files) and super fine (17 Gbyte) in 2007

QMP Library

- Message passing library, essentially an LQCD-optimized subset of MPI, with multiple implementations which abstract details of underlying communications hardware
- Role: Testing on clusters, native Infiniband implementation

Status:

- Most physics production uses QMP over MPI (MILC, but not FermiQCD or Canopy)
- Infiniband implementation has been delayed awaiting effort (called out by USQCD Project reviewers last May)
 - Deliverable for SciDAC-2

Runtime Environment

- Design and implementation of a user environment allowing portability between BNL, FNAL, JLab, and other sites for:
 - Scripts and Makefiles
 - Location of disk resources (scratch, HSM, parallel)
 - 3. Batch (submitting jobs, launching binaries)
 - 4. Data Grid (catalogs, utilities for moving files)

Status:

- 1/2 implemented last summer, but decayed during OS upgrade in December
- Collaboration has let this slip and is currently reviving
- Progress promised by JLab/FNAL in next two months
- Limited by effort at both sites

- Prototyping
 - Assessing performance and suitability of processors and networks for large scale clusters
 - Status (last 6 months)
 - Processor testing for JLab, FNAL USQCD clusters:
 - Dual core single Pentium (830D, 955EE)
 - Intel "Sossaman" (ultra low power 110 Watt/dual box)
 - Intel "Dempsey" and "Woodcrest" (FBDIMM architecture)
 - AMD dual core Opteron
 - See USQCD review slides for results
 - Completed in time for JLab, FNAL procurements
 - Remote testing of Infinipath (flavor of Infiniband)

- Production prototype clusters
 - Decommissioned "w" (dual Xeon) in December
 - Helped transfer ¼ to accelerator simulation
 - Built "pion" in Spring/Fall
 - Largest to date: 520 single Pentium 640 nodes
 - Infiniband
 - Relocated "qcd" in December
 - To make room for New Muon Room 107 construction
 - 128-node Myrinet/Pentium 4E cluster
 - Operated "w", "qcd", "pion" (see USQCD)

4

- If funded, SciDAC-2 would start in July
- SSE:
 - Verify correctness in x86_64 mode (9/2006)
 - Optimizations for 64-bit mode (12/2006)
 - Revise for x86_64 ABI (6/2007)
 - Opteron-specific optimizations (9/2006)
- Native Infiniband QMP library
 - Report on prototyping (10/2006)
 - Implementation for "gen-1" (12/2006)
 - Implementation for "gen-2" (6/2007)

4

- Multicore support
 - OpenMP, thread, shm prototyping (12/2006)
 - Integrate with QLA/QDP (10/2007)
- Automated workflow
 - Specification for prototype complete (10/2006)
 - Profiling data generated for simulations (12/06)
- Monitoring and Control of Large Systems
 - Specification of prototype complete (9/2006)

- LQCD Runtime environment, GRID, ILDG
 - Deployment/testing of clients for metadata catalog access complete (12/2006)
 - Deployment/testing of clients for data movement complete (12/2006)
 - Integration with automated workflow system (starts Jan 2007)

- Hardware Prototyping first year
 - Either Opteron "Socket F" or Intel Woodcrest
 - Infinipath flavor of Infiniband
 - Funds requested sufficient for ~ 16 nodes
 - Procurement would start as soon as funds are available
 - Need to provide results to USQCD project in time for their procurement (Nov 2006)

1

Deliverables - USQCD

- Project Management
 - OMB Exhibit 300 BY08 by May 8
 - BY08 first pass delivered April 6
 - BY07 Delivered revisions in Aug 05, Dec 05
 - PM IT Certification
 - Level 1 Project Manager IT certification required
 - Holmgren Finished training 12/05, certified
 - Banerjee Finished training 4/06, certified (?)
 - WBS (cost and schedule tracking)
 - Maintained monthly by Bakul for BNL, FNAL, JLab
 - Performance (see milestones)
 - Maintained monthly by Bakul for BNL, FNAL, JLab

- Monthly and quarterly reports
 - Informal reports are given to project and program managers (Jehanne Simon-Gillo, John Kogut, Sid Coon, Jeffrey Mandula) at phone cons monthly
 - Formal reports DOE "Control Review Templates" are submitted at the end of the 2nd month of each quarter
- External Reviews
 - "Integrated Baseline Review" May 2005 at MIT
 - Project Progress Review May 25-26, 2006 at FNAL

Deployment of new clusters:

Year	Deploy (Tflops)	Fermilab HW Budget	
FY2006	2.0 (FNAL)	\$1548K	
FY2007	3.1 (JLab)	\$25K	
FY2008	4.2 (FNAL)	\$1486K	
FY2009	3.0 (FNAL)	\$622K	

- JLab "6N" cluster 140/140 nodes (SciDAC/project)
 - Release to production May 1, 0.3/0.3 TFlops

- Fermilab "Kaon" cluster
 - Approximately 450 dual processor nodes (\$1.43M Project, \$220K SciDAC/supplemental)
 - RFP released April 3, due back April 28
 - P.O. to issue about May 17 after DOE approvals
 - First rack by end of June, remaining racks by early August
 - Release to users by end of September
 - Had planned for 1.8 Tflops, but latest Intel/AMD performance will only give us 1.6 – 1.7 TFlops

- Operation of existing clusters and QCDOC
 - Primary metric is delivered Tflops-yrs
 - Also, we track at each site uptime and response time on trouble tickets

Year	Deliver (Tflops-Yrs)		
	(1110p3-113)		
FY2006	6.2		
FY2007	9		
FY2008	12		
FY2009	15		

Progress through March:

Running Sums	FNAL	Jlab	BNL	Total	Pace	% Pace	Deficit
Oct	0.066	0.069	0.427	0.563	0.612	92%	0.049
Nov	0.120	0.124	0.766	1.010	1.087	93%	0.077
Dec	0.160	0.181	1.108	1.449	1.563	93%	0.114
Jan	0.224	0.237	1.458	1.919	2.038	94%	0.120
Feb	0.295	0.304	1.876	2.475	2.633	94%	0.158
Mar	0.377	0.355	2.226	2.958	3.108	95%	0.150

- Data in Tflops-yrs
- JLab "6N" will add 0.05 Tflops-yrs/month starting in May (and perhaps 0.025 Tflops-yrs in April)

Effort Profile

Sources:

- Holmgren, 50%+ PM, 50% other
- Bakul Banerjee, 50%+ PM
- Amitoj Singh, 100%
- Kurt Ruthmansdorfer, 100%
- Jim Simone, 50%
- Bob Forster, 10-25%
- Jim Kowalkowski, 25% (future unclear)
- ESE Techs (as needed during construction)
- Valery Sergeev (as needed during construction)
- Total: 4+ FTE

Effort Profile

Sinks

- USQCD:
 - Administration/Hardware: 1.75 FTE
 - Site Management: 0.25 FTE
 - Software Support: 0.5 FTE (from base)
 - Project Management: 0.75 FTE (plus 0.5 from base)
- SciDAC:
 - Cluster prototyping, software development: 2.5 3.0
- Total: 6.25 6.75
- This understates effort required. Help expected:
 - Pr. Sun (IIT sabbatical) will help on workflow 06/07
 - Interviewing candidates for #060075 in June
 - Still need more!

Hardware

- USQCD deploy goal requires 1.7 Tflops from 2006 cluster
- New Intel architecture (FBDIMMs) has been late, slow, and hot
- AMD Opteron was the fallback, and will likely win our RFP
- Depending upon vendor pricing, we may fall short by 0.1 TFlops

Facilities

- All hardware is at New Muon
- Health of New Muon affects availability and reliability of existing clusters
 - Room 108 uses chillers
- New Muon Room 107 construction project
 - Beneficial occupancy slipped since August from April until June 15
 - June 15 looks solid
 - Room 107 should be available in time for first hardware at the end of June

- Infiniband Reliability
 - With "Kaon", 95% of our capacity will depend on Infiniband hardware
 - Failures to date (500+ HCA's, 33 leaf switches, 1 spine switch):
 - All of first 260 HCA's replaced by vendor because of faulty soldering during manufacture
 - Since then, only 2 failed HCA's
 - 3 failed leaf switches (bad power supplies)
 - We have strong relationship with Mellanox
 - Need to maintain this to assure hardware support

- Linux stability
 - Very stable operations through November using a very old distribution (Fermi RedHat 7.3.x)
 - Upgraded to LTS 4.1 in December
 - Many kernel problems on head node through mid-February (crashes related to NFS)
 - Kernel.org kernel + patches stabilized head node
 - Currently battling NFS client stability on workers
 - 650+ clients do NFS mounts from lqcd.fnal.gov
 - Very low NFS traffic
 - NFS mounts are freezing about to switch to UDP from TCP

- dCache is our current parallel file system
 - Require arbitrarily large flat file system
 - Require large scalable I/O rates
 - Production throughput depends upon staging data products in and out of jobs
 - To dramatically increase in 2007
 - Data writing can overwhelm pool nodes because of independence of TCP/IP stack and dCache software
 - Mostly dccp usage now, but must move to libdcap
 - Large file support issue
 - Will move to x86_64 with "Kaon" may reveal new issues

- Infiniband software stack
 - We use "OpenIB", development sponsored by tri-labs as part of ASCI
 - Very stable now, but various "nannies" are in-place to reset pieces (for example, the subnet manager)
 - We use two non-commercial MPI's
 - Mvapich from OSU
 - Mpich-vmi from NCSA/UIUC
 - Both have required minor FNAL patching
 - We will have to move to OpenIB "Gen-2" once the ASCI community moves and "Gen-1" decays

- Hints of a deep problem in OpenIB or MPI
 - By accident, MILC software with full message checking (check summing) was used in production starting in August
 - On some types of production, nearly deterministic checksum errors were found very late in runs
 - Onset of problem was eventually traced to a memory leak in MILC application code
 - Fixing the leak fixed the problem but, the root cause was never determined

Effort

- We are running far too lean
 - Have not fulfilled ILDG responsibilities to my satisfaction since Eric Neilsen moved to EAG (12/2004)
 - Replacement opening has just been posted and interviewing should start in June
- Key personnel we are vulnerable to the loss of key personnel and should have succession planning
 - Very important to USQCD to overlap with JLab
 - JLab "6N" cluster very helpful to spread IB knowledge